SARS-CoV-2 RNA Isolation Method from Sewage Sludge, Application in Field Samples and Comparison with Bacteriophage Loads

  • Yann Quesnelle SARS-CoV-2 RNA Isolation Method from Sewage Sludge, Application in Field Samples and Comparison with Bacteriophage Loads
  • Suzanne Trancart LABÉO, Research department, 1 Route de Rosel, 14053 Caen Cedex 4, France
  • Hélène Bouras LABÉO, Research department, 1 Route de Rosel, 14053 Caen Cedex 4, France
  • Maryline Houssin LABÉO, Research department, 1 Route de Rosel, 14053 Caen Cedex 4, France
Keywords: SARS-CoV-2, Sewage sludge, Viral concentration, RNA isolation

Abstract

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is mainly transmitted through the respiratory tract. It can also be found in faeces leading to its detection in wastewater and potentially in sewage sludge. This one can be used in agriculture as a soil amendment. In France, the spreading of sludge is controlled in order to limit the dissemination of pathogenic microorganisms including SARS-CoV-2 since the pandemic. However, the control only concerns the analysis of bacteriophages. The present study was carried out to assess the presence of the virus in sewage sludge and compare with bacteriophages results. It describes the validation of a method for the isolation of SARS-CoV-2 RNA for detection by RT-PCR, using a surrogate virus. Two virus concentration methods and three nucleic acid extraction methods were compared. After validation, the most efficient method was applied to field samples (n=34) from Normand sewage treatment plants during the pandemic. Then, the results were compared with bacteriophage loads. According to our results, PEG precipitation followed by a nucleic acid extraction based on cleared lysate with phenol:chloroform:isoamyl alcohol, then concentrated and purified on anion-exchange column was selected. This process resulted in a yield of 39.6±37.3%. The field study confirmed the presence of SARS-CoV-2 in both primary and hygienized sludges. The comparative analysis suggested that the study of the effectiveness of sanitation on bacteriophages does not appear representative of that on SARS-CoV-2. In addition to the bacteriophages test, a direct search for the SARS-CoV-2 is recommended to evaluate the sanitation of sludge.

Downloads

Download data is not yet available.

References

https://ictv.global/taxonomy. https://ictv.global/taxonomy.

Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, Blomberg WR, Meigs DD, Hasan M, Patel M, Kline P, Chang RCC, Chang L, Gendelman HE, Kevadiya BD. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. Journal of Neuroimmune Pharmacology. 2020. https://doi.org/10.1007/s11481-020-09944-5

Bora I, Gogoi S, Venkatasubramanian V, Mathew R, Mohindra R. Persistence of sars-cov-2 in body fluids: A bystander or whistle blower. Iranian Journal of Microbiology. 2020. DOI: 10.18502/ijm.v12i5.459

Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA - Journal of the American Medical Association. 2020. DOI: 10.1001/jama.2020.3786

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020. DOI: 10.1053/j.gastro.2020.02.055

Zhang Y, Chen C, Zhu S, Shu C, Wang D, Song J, Song Y, Zhen W, Feng Z, Wu G, Xu J, Xu W. Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Weekly. 2020. DOI: 10.46234/ccdcw2020.033

McCall C, Wu H, Miyani B, Xagoraraki I. Identification of multiple potential viral diseases in a large urban center using wastewater surveillance. Water Research. 2020. https://doi.org/10.1016/j.watres.2020.116160

Bibby K, Peccia J. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environmental Science and Technology. 2013. DOI: 10.1021/es305181x

Gholipour S, Ghalhari MR, Nikaeen M, Rabbani D, Pakzad P, Miranzadeh MB. Occurrence of viruses in sewage sludge: A systematic review. Science of the Total Environment. 2022. DOI: 10.1016/j.scitotenv.2022.153886

Suhadolc M, Schroll R, Hagn A, Dörfler U, Schloter M, Lobnik F. Single application of sewage sludge - Impact on the quality of an alluvial agricultural soil. Chemosphere. 2010. https://doi.org/10.1016/j.chemosphere.2010.08.024

Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ. The presence of contaminations in sewage sludge – The current situation. Journal of Environmental Management. 2017. DOI : 10.1016/j.jenvman.2017.05.068

Journal Officiel République Française. JORF n°0121 du 27 mai 2021. 2021. https://www.legifrance.gouv.fr/download/pdf?id=tnDkLomDEXzUnDetotFJNWgPlRv7gOmIegJaPV6kUU0=

Journal Officiel République Française. JORF n°23 du 31 janvier 1998. 1998. https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000570287

AFNOR. NF T 90-451 Essais des eaux - Recherche des entérovirus - Méthode par concentration sur laine de verre et détection par RT-qPCR, et/ou par culture cellulaire. 2020. https://www.boutique.afnor.org/fr-fr/norme/nf-t90451/essais-des-eaux-recherche-des-enterovirus-methode-par-concentration-sur-lai/fa156831/260786

AFNOR. FD CEN/TR 15214-2 Caractérisation des boues - Détection et dénombrement des Escherichia coli dans les boues, les sols, les amendements du sol, les supports de culture et les biodéchets - Partie 2 : méthode miniaturisée (nombre le plus probable) par ensemencement en milieu liquide. 2006. https://www.boutique.afnor.org/fr-fr/norme/fd-cen-tr-152142/caracterisation-des-boues-detection-et-denombrement-des-escherichia-coli-da/fa137923/27377

AFNOR. FD X33-040 Caractérisation des boues - Dénombrement et viabilité des oeufs d’helminthes parasites - Méthodes de dénombrement. 2013. https://www.boutique.afnor.org/fr-fr/norme/fd-x33040/caracterisation-des-boues-denombrement-et-viabilite-des-oeufs-dhelminthes-p/fa177182/41359

Foladori P, Cutrupi F, Segata N, Manara S, Pinto F, Malpei F, Bruni L, la Rosa G. SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Science of the Total Environment. 2020. https://doi.org/10.1016/j.scitotenv.2020.140444

Sharma D, Nalavade U, Kalgutkar K, Gupta N, Deshpande J. SARS-CoV-2 detection in sewage samples: Standardization of method & preliminary observations. Indian Journal of Medical Research. 2021. DOI: 10.4103/ijmr.IJMR_3541_20

Orive G, Lertxundi U, Barcelo D. Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Science of The Total Environment. 2020. DOI: 10.1016/j.scitotenv.2020.139298

Barril PA, Pianciola LA, Mazzeo M, Ousset MJ, Jaureguiberry MV, Alessandrello M, Sánchez G, Oteiza JM. Evaluation of viral concentration methods for SARS-CoV-2 recovery from wastewaters. Science of the Total Environment. 2021. https://doi.org/10.1016/j.scitotenv.2020.144105

Clark MA. Bovine coronavirus. British Veterinary Journal. 1993. DOI: 10.1016/S0007-1935(05)80210-6

Suzuki T, Otake Y, Uchimoto S, Hasebe A, Goto Y. Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis. Viruses. 2020. https://doi.org/10.3390/v12020183

Hogue BG, King B, Brian DA. Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59. Journal of Virology. 1984. https://doi.org/10.1128/jvi.51.2.384-388.1984

Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World Journal of Virology. 2016. https://doi.org/10.5501/wjv.v5.i2.85

AFNOR. NF EN ISO 10705-2 Qualité de l’eau - Détection et dénombrement des bactériophages - Partie 2 : dénombrement des coliphages somatiques. 2001. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-107052/qualite-de-leau-detection-et-denombrement-des-bacteriophages-partie-2-denom/fa117463/19113?pk_source=google-adwords&pk_medium=cpc&gclid=EAIaIQobChMI-5zWjIOo-QIVD7h3Ch2sBQXHEAAYASAAEgLiXfD_BwE.

Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977. https://doi.org/10.2307/2529310

Amdiouni H, Faouzi A, Fariat N, Hassar M, Soukri A, Nourlil J. Detection and molecular identification of human adenoviruses and enteroviruses in wastewater from Morocco. Letters in Applied Microbiololy. 2012. DOI: 10.1111/j.1472-765X.2012.03220.x

Masclaux FG, Hotz P, Friedli D, Savova-Bianchi D, Oppliger A. High occurrence of hepatitis E virus in samples from wastewater treatment plants in Switzerland and comparison with other enteric viruses. Water Research. 2013. https://doi.org/10.1016/j.watres.2013.05.050

Strubbia S, Schaeffer J, Oude Munnink BB, Besnard A, Phan MVT, Nieuwenhuijse DF, De Graaf M, Schapendonk CME, Wacrenier C, Cotton M, Koopmans MPG, Le Guyader FS. Metavirome sequencing to evaluate norovirus diversity in sewage and related bioaccumulated oysters. Frontiers in Microbiology. 2019. https://doi.org/10.3389/fmicb.2019.02394

Prado T, Bonet Guilayn W de CP, Coimbra Gaspar AM, Pereira Miagostovich M. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge. Memorias do Instituto Oswaldo Cruz. 2013. DOI: 10.1590/S0074-02762013000100013

Kocamemi BA, Kurt H, Hacıoglu S, Yaralı C, Saatci AM, Pakdemirli B. First Data-Set on SARS-CoV-2 Detection for Istanbul Wastewaters in Turkey. medRxiv. 2020. DOI: 10.1101/2020.05.03.20089417

D’Aoust PM, Mercier E, Montpetit D, Jia JJ, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Langlois MA, Servos MR, MacKenzie M, Figeys D, MacKenzie AE, Graber TE, Delatolla R. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Research. 2021. https://doi.org/10.1016/j.watres.2020.116560

Balboa S, Mauricio-Iglesias M, Rodriguez S, Martínez-Lamas L, Vasallo FJ, Regueiro B, Lema JM. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Science of the Total Environment. 2021. https://doi.org/10.1016/j.scitotenv.2021.145268

Published
2022-10-07
How to Cite
Quesnelle, Y., Trancart, S., Bouras, H., & Houssin, M. (2022). SARS-CoV-2 RNA Isolation Method from Sewage Sludge, Application in Field Samples and Comparison with Bacteriophage Loads. Journal of Environmental Treatment Techniques, 10(4), 235-241. https://doi.org/10.47277/JETT/10(4)241
Section
Regular publication process