The Comparative study of adsorption capacity of two mixed materials for arsenic remediation in aqueous solutions

Arsenic remediation using mixed materials

  • Yacouba SANOU Laboratory of Analytical, Environmental and Bio-Organic Chemistry, Chemistry Department, University Joseph KI-ZERBO, 03 BP 7021. Burkina Faso
  • Samuel PARE Laboratory of Analytical, Environmental and Bio-Organic Chemistry, Chemistry Department, University Joseph KI-ZERBO, 03 BP 7021. Burkina Faso
Keywords: Adsorption, arsenic, granular ferric hydroxide, laterite, mixed materials.

Abstract

Arsenic pollution is one of issues for drinkable water supply in rural areas of Burkina Faso. The objective of this study was to look for a cheap technology for a better treatment of enriched arsenic water up to the admissible value (10 µg/L) in drinking water. To fulfil this objective, two mixed materials were prepared using a solid / solid mixture between laterite soil and granular ferric hydroxide for arsenic adsorption. Chemical analysis of laterite soil indicated a high amount of iron, aluminum and silicon. Batch experiments were conducted for As(V) adsorption using aqueous solutions. Results showed that the adsorption of arsenic (V) was strongly influenced by contact time, initial pH, adsorbent amount and initial As(V) concentration requiring their optimization. Indeed, the increase of the contact time between 5 and 90 min involved an increase of adsorption capacity up to 49.47µg/g while a change of initial pH caused a variation of adsorption capacity from 49 to 42.38 µg/g. An increase of initial arsenic concentration showed a proportional increase of adsorption capacity for both mixed material while this capacity decreased when the adsorbent amount increased. Using both kinetic models, As(V) adsorption followed best the pseudo-second order kinetic.

References

Some I.T., Sakira A. K., Ouedraogo M., Ouedraogo T. Z., Traore A., Sondo B., Guissou P. I. Arsenic levels in tube-wells water, food, residents’ urine and the prevalence of skin lesions in Yatenga province, Burkina Faso. Interdisciplinary Toxicology. 5 (2012), 38–41.

Sanou Y., Pare S. Arsenic pollution through drinking groundwater in Burkina Faso: research of a cheap removal technology, in: M. Nolasco, E. Carissimi, E. Urquieta-Gonzalez (Eds.) water perspectives in emerging countries: linking water security to sustainable development goals. Cuvillier Verlag Göttingen, Inc., Germany; (2018) 137-148.

Bretzler A., Lalanne F., Nikiema J., Podgorski J., Pfenninger N., Berg M., Schirmer M. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 584-585 (2017), 958–970.

Smedley P. L., Knudsen, J., Maiga D. Arsenic in groundwater from mineralized Proterozoic basement rocks of Burkina Faso. Applied Geochemistry. 22 (2007), 1074–1092.41

Juan F. R. Z. Développement d’un procédé d’élimination de l’arsenic en milieu aqueux, associant électro catalyse et filtration. Thèse unique, Université de Grenoble, France, (2012) 127p.

Borano T., Boonchai W., Chatpet Y. Adsorptive behavior of low-cost modified natural clay adsorbents for arsenate removal from water. Inter. J. Goemate.12 (33) (2017), 3325311-7.

Messeaouda S. Etude de la capacité de rétention et d’élimination des cations métalliques par des adsorbants naturels. Thèse unique, Université de Mustapha Stambouli, Mascara, Algérie (2015).

Ouvrard S. Couplage matériau / procédé d'adsorption pour l'élimination sélective d'arsenic présent en traces dans les eaux. Thèse unique, Institut National Polytechnique de lorraine, Frane (2001).

Tsegaye Girma Asere, Christian V. Stevens, Gijs Du Laing Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 676 (2019), 706–720.

Mahler J., Persson I. Rapid adsorption of arsenic from aqueous solution by ferrihydrite-coated sand and granular ferric hydroxide. Applied Geochemistry. 37 (2013), 179-189.

Sanou Y., Pare S., Phuong N. T. T., Phuoc N. V. Experimental and kinetic modelling of As(V) adsorption on granular ferric hydroxide and laterite. J. Environ. Treatment Techniques. 4(3) (2016), 62-70.

Saha. B, Bains R., Greenwood F. Physicochemical characterization of granular ferric hydroxide (GFH) for arsenic (V) sorption from water. Separation Science and Technology. 40 (2005), 2909 - 2932.

GEH Wasserchemie GEH 102: Granular Ferric Hydroxide for Arsenic Removal from Drinking Water. GEH Wasserchemie GmbH & Co. KG, Osnabrück, Germany (2013).

Maiti A., Dasgupta S., Basu J. K., De S. Adsorption of arsenite using natural laterite as adsorbent. Sep. Purif. Technol. 55 (2007), 350 – 359.

Maji S. K., Pal A., Pal T. Arsenic removal from real-life groundwater by adsorption on laterite soil. J. Hazard. Mater. 151 (2008), 811–820.

Partey F., Norman D., Ndur S., Nartey R. Arsenic sorption onto laterite iron concretions: Temperature effect. J. Colloid and Interface Science. 321 (2008), 493–500.

Phuong T. T. Nguyen, Sanou Y., Pare S., Ha M. B. Removal of arsenic from groundwater using Lamdong laterite as a natural adsorbent. Pol. J. Environ. Stud. 29(2) (2020), 1305–1314. DOI: https://doi.org/10.15244/pjoes/103028.

Sanou Y., Balogoun C. K., Tiendrebeogo R., Kabore R., Tchakala I., Pare S. Physico-chemical and spectroscopic properties of two laterite soils for applications in arsenic water treatment. Inter. J. Multidisc. Res. Dev.7(5) (2020) , 12-17.

Giorgis I., Bonetto S., Guistetto R., Lawane A., Pantet A., Rossetti P., Thomassin J-H., Vinai R. The lateritic profile of Balkouin, Burkina Faso: Geochemistry, mineralogy and genesis. J. African. Earth. Sci. 90 (2014), 31-48.

Amy G. L., Chen H. W., Drizo A., Von Gunten U., Brandhuner P., Hund R., Chowdhury Z., Kommeni S., Sinha S., Jekel M., Banerjee K. Adsorbent treatment technologies for arsenic removal. AWWARF Project Report 2731 (2004).

Noh J. S., Schwarz J. A. Estimation of the point of zero charge of simple oxides by mass titration. J. colloid and Interface Science.130 (1989), 157-164.

Btatkeu-K. B. D., Tchatchueng J. B., Noubactep C., Car S. Designing metallic iron based water filters: Light from methylene blue discoloration. J. Environ. Mana. 166 (2015), 567-573.

Lagergren, S., Svenska, B. K. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar. 24 (4) (1898), 1– 39.

Ho, Y. S., Mckay, G. Pseudo second order model for sorption process. Process Biochem. 34 (1999)., 451– 465.

Weber, W. J., Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanitary Engineering Division - American Society of Civils Engineers. 89 (1963), 31–60.

Ofomaja, A. E. Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust. Bioresource Technology. 101 (2010), 5868–5876.

Reilly S. E. O., Strawn D. G., Sparks D. L. Residence Time Effects on Arsenate Adsorption/Desorption Mechanisms on Goethite. Soil Sci. Soc. Am. J. 65 (2001), 67 – 77.

Hu Q., Liu Y., Gu X., Zhao Y., Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles. Chemosphere. 181(2017), 328 – 336.

Guo X., Chen F. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol. 39 (2005), 6808–6818.

A. Maiti, J. K. Basu, S. De Experimental and kinetic modeling of As(V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal. 191 (2012), 1 – 12.

Yadav S. L, Mishra K. B, Kumar A, Kakoli P. K. Arsenic Removal Using Bagasse Fly Ash-Iron Coated and Sponge Iron Char. J. Environ. Chem. Eng. 2(3) (2014), 1467–73. DOI: https://doi.org/10.1016/j.jece.2014.06.019.

Yao S, Liu Z, Shi Z. Arsenic Removal from Aqueous Solutions by Adsorption onto Iron Oxide/Activated Carbon Magnetic Composite. J. Environ. Health Sci. Eng. 12(1) (2014), 1–8. DOI: https://doi.org/10.1186/2052-336X-12-58.

Ho, Y.S., Ng, J.C.Y., Mckay, G. Kinetics of pollutant sorption by biosorbents: review. Separation and Purification Reviews. 29 (2000), 189–232.

Ocampo-Pérez, R., Abdel daiem, M.M., Rivera-Utrilla, J., Méndez-Díaz, J.D., Sánchez-Polo, M. Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. J. Colloid Interface Science. 385 (2012), 174–182.

Mahmood, T., Aslam, M., Naeem, A., Ali, R., Saddique, T. Equilibrium, kinetics, mechanism and thermodynamics studies of As(III) adsorption from aqueous solution using iron impregnated used tea. Des. Water Treat.104 (2018) , 135–148.

Din, Ud S., Mahmood, T., Naeem, A., Hamayun, M., Shah, N. S. Detailed kinetics study of arsenate adsorption by a sequentially precipitated binary oxide of iron and silicon. Environ. Technol., (2017), 1-9.

Driehaus W., M. Jekel, U. Hildebrandt Granular ferric hydroxide - a new adsorbent for the removal of arsenic from natural water. J. Water Supply Res. T., 47 (1998), 30-35.

Tawabini B.S., S.F.A. Al-Khaldi, M.M. Khaled and M.A. Atieh Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J. Environ. Sci. Health A, 46 (2011), 215-223.

Mohan, D. Jr., C.U. Pittman, N. Arsenic removal from water/wastewater using adsorbents: a critical review. J. Hazard. Mater., 142 (2007), 1-53.

Thirunavukkarasu O.S., T. Viraraghavan, K.S. Subramanian Arsenic removal from drinking water using iron-oxide coated sand. Water Air Soil Pollut. 142 (2003), 95-111.

Published
2021-03-02
How to Cite
SANOU, Y., & PARE, S. (2021). The Comparative study of adsorption capacity of two mixed materials for arsenic remediation in aqueous solutions. Journal of Environmental Treatment Techniques, 9(3), 559-565. https://doi.org/10.47277/JETT/9(3)565
Section
Regular publication process