Biochemical composition properties of Kombucha SCOBY: Mini Reviews

  • Sargol Mazraedoost Shiraz University of Medical Sciences, Shiraz, Iran.
  • Nastaran Banaei Shiraz University of Medical Sciences, Shiraz, Iran.
Keywords: Kombucha, SCOBY, Biochemical

Abstract

Kombucha is a fermented tea drink prepared as a result of the symbiotic nature of bacterial cultures and yeast, the so-called SCOBY (Symbiotic Cultures of Bacteria and Yeast). Kombucha is characterized by a rich chemical content and stable properties. Kombucha is a beverage produced by the fermentation of sugared tea using a symbiotic culture of bacteria and yeasts. Kombucha intake has been correlated with certain health benefits, such as: lowered cholesterol and blood pressure levels, decreased cancer spread, improved liver, immune system, and gastrointestinal functions.

Downloads

Download data is not yet available.

Author Biographies

Sargol Mazraedoost, Shiraz University of Medical Sciences, Shiraz, Iran.

Biotechnology Research Center

Nastaran Banaei, Shiraz University of Medical Sciences, Shiraz, Iran.

Biotechnology Research Center

References

1. Jakubczyk K, Gabriela P, Janda K. Characteristics and biochemical composition of kombucha – fermented tea. Medycyna Ogólna i Nauki o Zdrowiu. 2020;26. doi: 10.26444/monz/118887.
2. Jakubczyk K, Kałduńska J, Kochman J, Janda K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants. 2020;9(5):447.
3. Barbosa CD, Santos WCR, Alvarenga VO, Albano HdC, Teixeira PCM, Rosa CA, et al. Enumeration and isolation of acid acetic bacteria in kombucha during fermentation. MicroBiotec: Congress Of Microbiology And Biotechnology 2019: Universidade de Coimbra; 2019. p. 468.
4. Ansari F, Pourjafar H, Kangari A, Homayouni A. Evaluation of the Glucuronic Acid Production and Antibacterial Properties of Kombucha Black Tea. Current pharmaceutical biotechnology. 2019;20(11):985-90.
5. Villarreal‐Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. Understanding kombucha tea fermentation: a review. Journal of food science. 2018;83(3):580-8.
6. Jayabalan R, Waisundara VY. Kombucha as a Functional Beverage. Functional and Medicinal Beverages. Elsevier; 2019. p. 413-46.
7. Khosravi S, Safari M, Emam‐Djomeh Z, Golmakani MT. Development of fermented date syrup using Kombucha starter culture. Journal of Food Processing and Preservation. 2019;43(2):e13872.
8. Qian Q, Zhang J, Cui M, Han B. Synthesis of acetic acid via methanol hydrocarboxylation with CO 2 and H 2. Nature communications. 2016;7(1):1-7.
9. Risley C, Geisinger KR, Robinson JC, Stewart MW, Zhang L, Alexander R, et al. Precancerous cervical lesions and HPV genotypes identified in previously unsatisfactory cervical smear tests after inexpensive glacial acetic acid processing. International Journal of Gynecology & Obstetrics. 2019;144(1):85-9.
10. Huang J, Zhuang W, Ge L, Wang K, Wang Z, Niu H, et al. Improving biocatalytic microenvironment with biocompatible ε-poly-l-lysine for one step gluconic acid production in low ph enzymatic systems. Process Biochemistry. 2019;76:118-27.
11. Asano T, Kondo R, Mori Y, Takenawa S, Yamochi M, Kunugita K, et al. Bifidobacterium growth promotant. Google Patents; 1998.
12. Biagi G, Piva A, Moschini M, Vezzali E, Roth F. Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. Journal of Animal Science. 2006;84(2):370-8.
13. De Lange C, Pluske J, Gong J, Nyachoti C. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science. 2010;134(1-3):124-34.
14. Saluk-Juszczak J. A comparative study of antioxidative activity of calcium-D-glucarate, sodium-D-gluconate and D-glucono-1, 4-lactone in a human blood platelet model. Platelets. 2010;21(8):632-40.
15. Canete-Rodriguez AM, Santos-Duenas IM, Jimenez-Hornero JE, Ehrenreich A, Liebl W, Garcia-Garcia I. Gluconic acid: properties, production methods and applications—an excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochemistry. 2016;51(12):1891-903.
16. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science. 2013;6(5):1415-42.
17. Maki-Arvela P, Simakova IL, Salmi T, Murzin DY. Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chemical reviews. 2014;114(3):1909-71.
18. Dong W, Shen Z, Peng B, Gu M, Zhou X, Xiang B, et al. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta Lewis acid-base catalyst. Scientific reports. 2016;6:26713.
19. Park B, Hwang H, Chang JY, Hong SW, Lee SH, Jung MY, et al. Identification of 2-hydroxyisocaproic acid production in lactic acid bacteria and evaluation of microbial dynamics during kimchi ripening. Scientific reports. 2017;7(1):1-8.
20. Eguchi K, Fujitani N, Nakagawa H, Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Scientific reports. 2019;9(1):1-11.
21. Abd Alsaheb RA, Aladdin A, Othman NZ, Abd Malek R, Leng OM, Aziz R, et al. Lactic acid applications in pharmaceutical and cosmeceutical industries. Journal of Chemical and Pharmaceutical Research. 2015;7(10):729-35.
22. Wang Y, Tian T, Zhao J, Wang J, Yan T, Xu L, et al. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnology letters. 2012;34(11):2069-75.
23. Raeisi F, Raeisi E. Mini review of polysaccharide nanoparticles and drug delivery process. Advances in Applied NanoBio-Technologies. 2020;1(2):33-44.
24. Garayemi S, Raeisi F. Graphene Oxide as a Docking Station for Modern Drug Delivery System. by Ulva lactuca species study its antimicrobial, anti-fungal and anti-Blood cancer activity. Advances in Applied NanoBio-Technologies. 2020;1(2):53-62.
25. Narěbska A, Staniszewski M. Separation of fermentation products by membrane techniques. I. Separation of lactic acid/lactates by diffusion dialysis. Separation science and technology. 1997;32(10):1669-82.
26. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551(7678):115-8.
27. Tech JET. Investigating the Activity of Antioxidants Activities Content in Apiaceae and to Study Antimicrobial and Insecticidal Activity of Antioxidant by using SPME Fiber Assembly Carboxen/Polydimethylsiloxane (CAR/PDMS). Journal of Environmental Treatment Techniques. 2020;8(1):214-24.
28. Lorentzen MP, Campbell-Sills H, Jorgensen TS, Nielsen TK, Coton M, Coton E, et al. Expanding the biodiversity of Oenococcus oeni through comparative genomics of apple cider and kombucha strains. BMC genomics. 2019;20(1):330.
29. Mousavi S, Zarei M, Hashemi S. Polydopamine for biomedical application and drug delivery system. Med Chem (Los Angeles). 2018;8:218-29.
30. Lund J, Aas V, Tingstad RH, Van Hees A, Nikolić N. Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Scientific reports. 2018;8(1):1-14.
31. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93-102.
32. Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Progress in polymer science. 2010;35(3):338-56.
33. Gholami A, Mohkam M, Rasoul-Amini S, Ghasemi Y. Industrial production of polyhydroxyalkanoates by bacteria: opportunities and challenges. Minerva Biotechnol. 2016;28(1):59-74.
34. Oliveira JE, Medeiros ES, Cardozo L, Voll F, Madureira EH, Mattoso LHC, et al. Development of poly (lactic acid) nanostructured membranes for the controlled delivery of progesterone to livestock animals. Materials Science and Engineering: C. 2013;33(2):844-9.
35. Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A, Esmaeili H, et al. Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in brief. 2020;28:104929.
36. Chen C, Liu B. Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of applied microbiology. 2000;89(5):834-9.
37. Jayabalan R, Marimuthu S, Swaminathan K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry. 2007;102(1):392-8.
Published
2020-12-20
How to Cite
1.
Mazraedoost S, Banaei N. Biochemical composition properties of Kombucha SCOBY: Mini Reviews. AANBT [Internet]. 20Dec.2020 [cited 24Apr.2024];1(4):99-04. Available from: https://dormaj.org/index.php/AANBT/article/view/82