Fabrication of PVDF/Al Nanofibers via electrospinning and depositing CuO by sputtering method
Abstract
The metastable intermixed composites (MICs), as one of typical energetic materials (EMs), can store a large amount of chemical energy that are able to be released violently, which has been the motivation for their use in numerous military and industrial applications, such as propellants, explosives, and pyrotechnics. The MICs are normally composed of a metal fuel (e.g. Al, Mg, or Ti) and an oxidizer (e.g. CuO, Fe2O3, PTFE, or PVDF), where CuO/Al could be the most widely concerned as the combination appears to yield exothermic metallic gas generation. In this study, the electrospinning technique has been employed to fabricate PVDF/Al nanofibers, then CuO Nanoparticles were deposited onto PVDF/Al nanofiber by r.f. (13.56 MHz) sputtering method. Field Emission Scanning Electron Microscope (FE-SEM) analysis of the reaction products revealed that PVDF/Al nanofibers are coated with CuO nanoparticles. The thermal reaction properties of the CuO sputtered PVDF/Al nanofibers were investigated by means of thermal gravimetric analysis (TGA).
Downloads
References
2. Rossi, C.; Zhang, K.; Esteve, D.; Alphonse, P.; Tailhades, P.; Vahlas, C. Nanoenergetic Materials for MEMS: A Review. J. Microelectromechanical Syst. 2007, 16, 919–931
3. Shende, R.; Subramanian, S.; Hasan, S.; Apperson, S.; Thiruvengadathan, R.; Gangopadhyay, K.; Gangopadhyay, S.; Redner, P.; Kapoor, D.; Nicolich, S.; et al. Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al-Nanoparticles. Propellants Explos.
Pyrotech. 2008, 33, 122–130.
4. Yan, Q.-L.; Cohen, A.; Petrutik, N.; Shlomovich, A.; Burstein, L.; Pang, S.-P.; Gozin, M. Highly insensitive and thermostable energetic coordination nanomaterials based on functionalized graphene oxides. J. Mater. Chem. A 2016, 4, 9941–9948.
5. He, W.; Tao, B.; Yang, Z.; Yang, G.; Guo, X.; Liu, P.-J.; Yan, Q.-L. Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites. Chem. Eng. J. 2019, 369, 1093–1101.
6. Sundaram, D., Yang, V., Yetter, R.A., 2017. Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog. Energy Combust. Sci. 61, 293–365
7. Yan, Q.-L., Zhao, F.-Q., Kuo, K.K., Zhang, X.-H., Zeman, S., DeLuca, L.T., 2016a. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 57, 75– 136.
8. Zhou, X., Torabi, M., Lu, J., Shen, R., Zhang, K., 2014. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl. Mater. Interfaces 6, 3058–3074.
9. Ma, X., Li, Y., Hussain, I., Shen, R., Yang, G., Zhang, K., 2020. Core-shell structured nanoenergetic materials: preparation and fundamental properties. Adv. Mater. 32, 2001291
10. Yan, S., Jian, G., Zachariah, M.R., 2012. Electrospun nanofiber-based thermite textiles and their reactive properties. ACS Appl. Mater. Interfaces 4, 6432–6435.
11. Yetter, R.A., Risha, G.A., Son, S.F., 2009. Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32, 1819–1838.
12. Bockmon, B.S., Pantoya, M.L., Son, S.F., Asay, B.W., Mang, J.T., 2005. Combustion velocities and propagation mechanisms of metastable interstitial composites. J. Appl. Phys. 98, 580–1240.
13. Chowdhury, S., Sullivan, K., Piekiel, N., Zhou, L., Zachariah, M.R., 2010. Diffusive vs explosive reaction at the nanoscale. J. Phys. Chem. C 114, 9191–9195.
14. Egan, G.C., LaGrange, T., Zachariah, M.R., 2015. Time-resolved nanosecond imaging of nanoscale condensed phase reaction. J. Phys. Chem. C 119, 2792–2797.
15. Xiang, K., Xiang, Z., Han, G., Hao, G., Wei, J., 2017. Surface functionalized core/shell structured CuO/Al nanothermite with long-term storage stability and steady combustion performance. Mater. Des. 140, 179–187.
16. Jang, N.-S., Ha, S.-H., Jung, S.-H., Kim, S.H., Lee, H.M., Kim, J.-M., 2019. Fully packaged paper heater systems with remote and selective ignition capabilities for nanoscale energetic materials. Sens. Actuators, A 287, 121–130.
17. Ke, X., Zhou, X., Hao, G., Xiao, L., Liu, J., Jiang, W., 2017. Rapid fabrication of superhydrophobic Al/Fe2O3 nanothermite film with excellent energy-release characteristics and long-term storage stability. Appl. Surf. Sci. 407, 137–14.
18. Ramachandran, R., Vuppuluri, V.S., Fleck, T.J., Rhoads, J.F., Gunduz, I.E., Son, S.F., 2018. Influence of stoichiometry on the thrust and heat deposition of On-Chip nanothermites. Propellants Explos. Pyrotech. 43, 258–266.
19. Ru, C., Wang, F., Xu, J., Dai, J., Shen, Y., Ye, Y., Zhu, P., Shen, R., 2017. Superior performance of a MEMS-based solid propellant microthruster (SPM) array with nanothermites. Microsyst. Technol. 23, 3161–3174.
20. Staley, C.S., Raymond, K.E., Thiruvengadathan, R., Herbst, J.J., Swaszek, S.M., Taylor, R.J., Gangopadhyay, K., Gangopadhyay, S., 2014. Effect of nitrocellulose gasifying binder on thrust performance and high-g launch tolerance of miniaturize nanothermite thrusters. Propellants Explos. Pyrotech. 39, 374–382
21. Xiang, Z., Xu, D., Jian, L., Zhang, K., 2015. CuO/Mg/fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property. Chem. Eng. J. 266, 163–17.
22. Xu, J., Tai, Y., Ru, C., Dai, J., Ye, Y., Shen, R., Zhu, P., 2017. Tuning the ignition performance of a microchip initiator by integrating various Al/MoO3reactive multilayer films on a semiconductor bridge. ACS Appl. Mater. Interfaces 9, 5580–558.
23. Yuan, X., Zhan, C., Jin, H., Chen, K., 2010. Novel method of thermite welding. Sci. Technol. Weld. Joining 15, 54–58
24. S.M. Umbrajkar, M. Schoenitz, E.L. Dreizin, Thermochim. Acta 451 (2006) 34–43.
25. D. Stamatis, Z. Jiang, V.K. Hoffmann, M. Schoenitz, E.L. Dreizin, Combust. Sci. Technol. 181 (2008) 97–116.
26. J. Wang, A.M. Hu, J. Persic, J.Z. Wen, Y.N. Zhou, J. Phys. Chem. Solids 72 (2011) 620–625.
27. R. Shende, S. Subramanian, S. Hasan, S. Apperson, R. Thiruvengadathan, K. Gangopadhyay, S. Gangopadhyay, P. Redner, D. Kapoor, S. Nicolich, Propellants Explos.
Pyrotech 33 (2008) 122–130.
28. J.J. Granier, M.L. Pantoya, Combust. Flame 138 (2004) 373–383.
29. M.A. Trunov, M. Schoenitz, X. Zhu, E.L. Dreizin, Effect of polymorphic phase transformations in Al2O3film on oxidation kinetics of aluminum powders, Combust. Flame 140 (2005) 310–318.
30. X. Zhou, D. Xu, J. Lu, K. Zhang, CuO/Mg/fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property, Chem. Eng. J. 266 (2015) 163–170.
31. X. Huang, Z. Huang, J.C. Lai, L. Li, G.C. Yang, C.H. Li, Self-healing improves the stability and safety of polymer bonded explosives, Compos. Sci. Technol. 167 (2018) 346–354.
32. D.T. Osborne, M.L. Pantoya, Effect of Al particle size on the thermal degradation of Al/Teflon mixtures, Combust. Sci. Technol. 179 (2007) 1467–1480.
33. S.K. Valluri, M. Schoenitz, E. Dreizin, Fluorine-containing oxidizers for metal fuels in energetic formulations, Defence Technol. 15 (1) (2019) 1–22.
34. X. Li, C. Huang, H. Yang, Y. Li, Y. Cheng, Thermal reaction properties of aluminum/ copper (II) oxide/poly (vinylidenefluoride) nanocomposite, J. Therm. Anal. Calorim. 124 (2016) 899–907.
35. W. He, P.J. Liu, F.Y. Gong, B.W. Tao, J. Gu, Z.J. Yang, Q.L. Yan, Tuning the reactivity of metastable intermixed composite n-Al/PTFE by polydopamine interfacial control, ACS Appl. Mater. Interfaces 10 (38) (2018) 32849–32858.
36. K.S. Kappagantula, C. Farley, M.L. Pantoya, J. Horn, Tuning energetic material reactivity using surface functionalization of aluminum fuels, J. Phys. Chem. C 116 (2012) 24469–24475.
37. Y.S. Kwon, A.A. Gromov, J.I. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin, Appl. Surf. Sci. 253 (2007) 5558–5564.
38. D.A. Kaplowitz, G. Jian, K. Gaskell, A. Ponce, P. Shang, M.R. Zachariah, Aerosol synthesis and reactivity of thin oxide shell aluminum nanoparticles viafluorocarboxylic acid functional coating, Syst. Char. 30 (2013) 881–887.
39. F. Liu, N.A. Hashim, Y.T. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375 (2011) 1–27.
40. C. Huang, G. Jian, J.B. DeLisio, H.Y. Wang, M.R. Zachariah, Electrospray deposition of energetic polymer nanocomposites with high mass particle loadings: a prelude to 3D printing of rocket motors, Adv. Eng. Mater. 17 (2015) 95–101.
41. X.Y. Li, P. Guerieri, W.B. Zhou, C. Huang, M.R. Zachariah, Direct deposit laminate nanocomposites with enhanced propellent properties, ACS Appl. Mater. Interfaces 7(2015) 9103–9109.
42. X.Y. Li, M.R. Zachariah, Direct deposit offiber reinforced energetic nanocomposites, Propellants Explos. Pyrotech. 42 (2017) 1079–1084.
[43] J. Lv, X.H. Liang, G.B. Ji, B. Quan, W. Liu, Y.W. Du, Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities, ACS Sustain. Chem. Eng. 6 (6) (2018) 7239–7249.
44.X.H. Liang, B. Quan, J.B. Chen, W.H. Gu, B.S. Zhang, G.B. Ji, Nano bimetallic@ carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications, ACS Appl. Nano Mater. 1 (10) (2018) 5712–5721.
45. Moshfeghian M, Azimi H, Mahkam M, Kalaee M, Mazinani S, Mosafer H. Effect of Solution Properties on Electrospinning of Polymer Nanofibers: A Study on Fabrication of PVDF Nanofibers by Electrospinning in DMAC and (DMAC/Acetone) Solvents. AANBT [Internet]. 20Jun.2020 [cited 1May2023];2(2):53-8.
46. Puts GJ, Crouse PL. The influence of inorganic materials on the pyrolysis of polytetrafluoroethylene: part 2: The common oxide of Al, Ga, In, Zn, Cu, Ni Co, Fe, Mn, Cr, V. Zr and La. J Fluorin Chem. 2014;168: 9–15.
Copyright (c) 2023 Advances in Applied NanoBio-Technologies
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.