Spinel ferrites, Nanomaterials, Catalysis, Conventional methods, Technologies, Applications.

Keywords: Spinel ferrites, Nanomaterials, Catalysis, Conventional methods, Technologies, Applications.


The most conventional approaches for producing spinel ferrite structured nanomaterials. This research illustrates process innovation and excellent execution of cobalt ferrite production technology. Cobalt ferrite offers a extensive range of scientific applications, including magnetic sensors, catalysis, wastewater treatment, and hydrogen generation, among others. CoFe2O4, also known as spinel ferrite nanostructure, has distinct properties and has been inspect with a heterogeneity of fuels. With major consequences for carbon compound structure, doping action, and toxicity reduction. During the procedure, a substantial number of gases such as NOx, etc. are emitted. Several techniques are used to synthesis cobalt ferrite, including the hammer's method, the sol-gel approach, the co-precipitation, the hydrothermal method, the microwave aided method, and the solution combustion method. Other than the loss of abundant excess energy, the combustion approach is the simplest solution. In the future, systematic management will be required to limit toxicity and greenhouse gas emissions to preserve the ecosystem.


Download data is not yet available.


[1] Freitas, M.R.D., Gouveia, G.L.D., Dalla Costa, L.J., Oliveira, A.J.A.D. and Kiminami, R.H.G.A., 2016. Microwave assisted combustion synthesis and characterization of nanocrystalline nickel-doped cobalt ferrites. Materials Research, 19, pp.27-32.
[2] Deganello, F. and Tyagi, A.K., 2018. Solution combustion synthesis, energy and environment: Best parameters for better materials. Progress in Crystal Growth and Characterization of Materials, 64(2), pp.23-61.
[3] Ortega López, Y., Medina Vázquez, H., Salinas Gutiérrez, J., Guzmán Velderrain, V., Lopez Ortiz, A. and Collins Martínez, V., 2015. Synthesis method effect of CoFe2O4 on its photocatalytic properties for H2 production from water and visible light. Journal of Nanomaterials, 2015.
[4] Shaikh, S.F., Ubaidullah, M., Mane, R.S. and Al-Enizi, A.M., 2020. Types, synthesis methods and applications of ferrites. In Spinel Ferrite Nanostructures for Energy Storage Devices (pp. 51-82). Elsevier.
[5] Nikmanesh, H., Jaberolansar, E., Kameli, P., Varzaneh, A.G., Mehrabi, M., Shamsodini, M., Rostami, M., Orue, I. and Chernenko, V., 2022. Structural features and temperature-dependent magnetic response of cobalt ferrite nanoparticle substituted with rare earth sm3+. Journal of Magnetism and Magnetic Materials, 543, p.168664.
[6] Kamran, M., & Anis-ur-Rehman, M. (2020). Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. Journal of Alloys and Compounds, 822, 153583.
[7] Cadar, O., Dippong, T., Senila, M., & Levei, E. A. (2020). Progress, Challenges and opportunities in divalent transition metal-doped cobalt ferrites nanoparticles applications. In Advanced Functional Materials (pp. 1-17). IntechOpen.
[8] Cadar, O., Dippong, T., Senila, M., & Levei, E. A. (2020). Progress, Challenges and opportunities in divalent transition metal-doped cobalt ferrites nanoparticles applications. In Advanced Functional Materials (pp. 1-17). IntechOpen.
[9] Zscherp, M. F., Bastianello, M., Nappini, S., Magnano, E., Badocco, D., Gross, S., & Elm, M. T. (2022). Impact of inversion and non-stoichiometry on the transport properties of mixed zinc-cobalt ferrites. Journal of Materials Chemistry C.
[10] Sajjad, M., Ali, K., Jamil, Y., Sehar, S., Akbar, L., Tahir, M., & Alzaid, M. (2021). RETRACTED ARTICLE: Effect of Zn substitution on the structural, magnetic, optical, and electrical properties of low-temperature-synthesized cobalt ferrites. Journal of Materials Science: Materials in Electronics, 32(5), 6001-6013.
[11] Ati, A. A., Abdalsalam, A. H., & Hasan, A. S. (2021). Thermal, microstructural and magnetic properties of manganese substitution cobalt ferrite prepared via co-precipitation method. Journal of Materials Science: Materials in Electronics, 32(3), 3019-3037.
[12] Rani, M., & Shanker, U. (2020). Efficient photocatalytic degradation of Bisphenol A by metal ferrites nanoparticles under sunlight. Environmental Technology & Innovation, 19, 100792.
[13] Vinosha, P. A., Manikandan, A., Ceicilia, A. S. J., Dinesh, A., Nirmala, G. F., Preetha, A. C., ... & Xavier, B. (2021). Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. Ceramics International, 47(8), 10512-10535.
[14] Almessiere, M. A., Slimani, Y., & Baykal, A. (2020). Synthesis and characterization of Co1–2xNixMnxCeyFe2–yO4 nanoparticles. Journal of Rare Earths, 38(2), 188-194.
[15] Warsi, M. F., Iftikhar, A., Yousuf, M. A., Sarwar, M. I., Yousaf, S., Haider, S., ... & Zulfiqar, S. (2020). Erbium substituted nickel–cobalt spinel ferrite nanoparticles: Tailoring the structural, magnetic and electrical parameters. Ceramics International, 46(15), 24194-24203.
[16] Kamran, M., & Anis-ur-Rehman, M. Non-Linear Hysteresis in La-Doped Ferrites for Advanced Electronics. Available at SSRN 4020723.
[17] Tatarchuk, T., Danyliuk, N., Kotsyubynsky, V., Shumskaya, A., Kaniukov, E., Ghfar, A. A., ... & Shyichuk, A. (2022). Eco-friendly synthesis of cobalt-zinc ferrites using quince extract for adsorption and catalytic applications: An approach towards environmental remediation. Chemosphere, 294, 133565.
[18] Hatamie, S., Balasi, Z. M., Ahadian, M. M., Mortezazadeh, T., Shams, F., & Hosseinzadeh, S. (2021). Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. Journal of Drug Delivery Science and Technology, 65, 102680.
[19] Malarvizhi, M., Meyvel, S., Sandhiya, M., Sathish, M., Dakshana, M., Sathya, P., ... & Karthikeyan, S. (2021). Design and fabrication of cobalt and nickel ferrites based flexible electrodes for high-performance energy storage applications. Inorganic Chemistry Communications, 123, 108344.
[20] Alzoubi, G. M., Albiss, B. A., Shatnawi, M., Bsoul, I., Alsmadi, A. M., Salameh, B., & Alna’Washi, G. A. (2020). Influence of High-Temperature Annealing on Structural and Magnetic Properties of Crystalline Cobalt Ferrite Nanoparticles in the Single-Domain Regime. Journal of Superconductivity and Novel Magnetism, 33(10), 3179-3188.
[21] Yuan, Y., Wei, S., Liang, Y., Wang, B., Wang, Y., Xin, W., ... & Zhang, Y. (2021). Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. Journal of Alloys and Compounds, 867, 159040.
[22] Mohamed, W. S., Hadia, N. M. A., Alzaid, M., & Abu-Dief, A. M. (2022). Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sciences, 125, 106841.
[23] Rani, R., Batoo, K. M., Sharma, P., Anand, G., Kumar, G., Bhardwaj, S., & Singh, M. (2021). Structural, morphological and temperature dependent electrical traits of Co0. 9Zn0. 1InxFe2-xO4 spinel nano-ferrites. Ceramics International, 47(21), 30902-30910.
[24] Shakil, M., Inayat, U., Khalid, N. R., Tanveer, M., Gillani, S. S. A., Tariq, N. H., ... & Dahshan, A. (2022). Enhanced structural, optical, and photocatalytic activities of Cd–Co doped Zn ferrites for degrading methyl orange dye under irradiation by visible light. Journal of Physics and Chemistry of Solids, 161, 110419.
[25] Slimani, Y., Almessiere, M. A., Güner, S., Kurtan, U., Shirsath, S. E., Baykal, A., & Ercan, I. (2020). Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol–gel approach. Journal of Sol-Gel Science and Technology, 95(1), 202-210.
[26] Albalah, M. A., Alsabah, Y. A., & Mustafa, D. E. (2020). Characteristics of co-precipitation synthesized cobalt nanoferrites and their potential in industrial wastewater treatment. SN Applied Sciences, 2(5), 1-9.
[27] Sharifianjazi, F., Moradi, M., Parvin, N., Nemati, A., Rad, A. J., Sheysi, N., ... & Asl, M. S. (2020). Magnetic CoFe2O4 nanoparticles doped with metal ions: a review. Ceramics International, 46(11), 18391-18412.
[28] Khan, M. Z., Gul, I. H., & Malik, A. (2020). Improved Electrical Properties Displayed by Mg2+-Substituted Cobalt Ferrite Nano Particles, Prepared Via Co-precipitation Route. Journal of Superconductivity and Novel Magnetism, 33(10), 3133-3144.
[29] Truc, T. A., Hoan, N. X., Thuy, T. T., Ramadass, K., Sathish, C. I., Chinh, N. T., ... & Hoang, T. (2020). Hydrothermal synthesis of cobalt doped magnetite nanoparticles for corrosion protection of epoxy coated reinforced steel. Journal of nanoscience and nanotechnology, 20(6), 3519-3526.
[30] Nikzad, A., & Parvizi, R. (2020). Presence of neodymium and gadolinium in cobalt ferrite lattice: structural, magnetic and microwave features for electromagnetic wave absorbing. Journal of Rare Earths, 38(4), 411-417.
How to Cite
JARARIYA R. A review SYNTHESIS OF CoFe2O4 NANOPARTICLES USING A VARIOUS SOLUTION COMBUSTION TECHNIQUES AND STUDY FOR ITS APPLICATIONS. AANBT [Internet]. 20Jun.2022 [cited 1Jul.2022];3(01):16-2. Available from: https://dormaj.org/index.php/AANBT/article/view/545