Modeling of the Thermal Degradation of Poly (methyl methacrylate) and its Nanocomposite with Multi-Walled Carbon Nanotubes

  • Alireza Aghili Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, IRAN
  • Mohammad Reza Kamrani Centre Català Del Plàstic, Universidad Politécnica de Catalunya Barcelona Tech, Terrassa, Spain
Keywords: Thermal degradation, Modeling, Arrhenius integral, PMMA, MWNT, Nanocomposite

Abstract

Modeling of non-isothermal degradation of polymers consists of the integration of the Arrhenius function which has no analytical solution. The integration is commonly estimated by a variety of approximation functions with varying complexity and precision. In this study, a mathematical formula was derived in which the Arrhenius integral is calculated without using common approximation functions. Calculations showed that the obtained formula has a better accuracy compared to the common approximation functions. The obtained formula was used to determine the kinetic parameters of thermal degradation of poly (methyl methacrylate) (PMMA) and its nanocomposite with multi-walled carbon nanotubes (MWNT). The kinetic parameters were also calculated by a different method which was based on a single point calculation and used the approximation functions for estimating the Arrhenius integral. The comparison showed that there is a better agreement between the experimentally measured and calculated data when the kinetic parameters obtained from new formula.

References

1. Pielichowski K, Njuguna J. Thermal degradation of polymeric materials. iSmithers Rapra Publishing; 2005.
2. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S, Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polymers from Renewable Resources. 2017;8(4):177-96.
3. Hoseini FS, Taherian R, Atashi A. Manufacturing and Properties of Poly Vinyl Alcohol/Fibrin Nanocomposite Used for Wound Dressing. Advances in Applied NanoBio-Technologies. 2020:6-12.
4. Menczel JD, Prime RB. Thermal analysis of polymers. 2009.
5. Muppalaneni S, Omidian H. Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs. 2013;2(3):1-5.
6. Moshfeghian M, Azimi H, Mahkam M, Kalaee M, Mazinani S, Mosafer H. Effect of Solution Properties on Electrospinning of Polymer Nanofibers: A Study on Fabrication of PVDF Nanofibers by Electrospinning in DMAC and (DMAC/Acetone) Solvents. Advances in Applied NanoBio-Technologies. 2021:53-8.
7. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado J. Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polymer degradation and stability. 2009;94(11):2079-85.
8. Criado J, Ortega A. The accuracy of equation approximating the integral of the Arrhenius equation to perform the kinetic analysis of solid state reactions. International journal of chemical kinetics. 1985;17(12):1365-73.
9. Smolders K, Baeyens J. Thermal degradation of PMMA in fluidised beds. Waste Management. 2004;24(8):849-57.
10. Mousavi S, Hashemi S, Amani A, Moujodi F, Hamedfateh A, Zarei M. Modification of polypropylene-starch blend by eggshell nano-particle, EVA and maleic anhydride to improve biodegradability and thermal properties. Int J Chem Sci. 2018;15:225.
11. Hoseinzadeh A, Sadeghipour Y, Behbudi G. Investigation Preliminary antimicrobial and anticancer properties: on Topic Rubia tinctorum plant by using Polydimethylsiloxane (CAR/PDMS). Advances in Applied NanoBio-Technologies. 2020;1(1):10-9.
12. Sadeghipour Y, Mojoudi F, Behbudi G. Modification and Improvement of Fe3O4-Embedded Poly (thiophene) Core/Shell Nanoparticles for Cadmium Removal by Cloud Point Extraction. Advances in Applied NanoBio-Technologies. 2020;1(1):20-7.





13. Raeisi F, Raeisi E. Mini review of polysaccharide nanoparticles and drug delivery process. Advances in Applied NanoBio-Technologies. 2020;1(2):33-44.
14. Masoumzadeh R. Polyethyleneimine-based materials for gene therapy, bioimaging and drug delivery systems applications. Advances in Applied NanoBio-Technologies. 2021;2(1):13-6.
15. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski J. Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves. Polymer degradation and stability. 2003;79(2):271-81.
16. Gao Z, Kaneko T, Hou D, Nakada M. Kinetics of thermal degradation of poly (methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polymer degradation and stability. 2004;84(3):399-403.
17. Staggs J. Population balance models for the thermal degradation of PMMA. Polymer. 2007;48(13):3868-76.
18. Grand AF, Wilkie CA. Fire retardancy of polymeric materials. CRC Press; 2000.
19. Zeng W, Li S, Chow WK. Review on chemical reactions of burning poly (methyl methacrylate) PMMA. Journal of Fire Sciences. 2002;20(5):401-33.
20. Hollingbery L, Hull TR. The fire retardant behaviour of huntite and hydromagnesite–A review. Polymer degradation and stability. 2010;95(12):2213-25.
21. Kashiwagi T, Du F, Winey KI, Groth KM, Shields JR, Bellayer SP, et al. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer. 2005;46(2):471-81.
22. Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH, Shields JR. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature materials. 2005;4(12):928-33.
23. Semaan C, Soum A. Influence of wrapping on some properties of MWCNT–PMMA and MWCNT–PE composites. Polymer bulletin. 2013;70(6):1919-36.
24. Ayanoğlu ZG, Doğan M. Characterization and thermal kinetic analysis of PMMA/modified-MWCNT nanocomposites. Diamond and Related Materials. 2020;108:107950.
25. Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA. The thermal degradation of poly (methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polymers for Advanced Technologies. 2006;17(4):272-80.
26. Pandey P, Anbudayanidhi S, Mohanty S, Nayak SK. Flammability and thermal characterization of PMMA/clay nanocomposites and thermal kinetics analysis. Polymer composites. 2012;33(11):2058-71.
27. Wang X, Su Q, Hu Y, Wang C, Zheng J. Structure and thermal stability of PMMA/MMT nanocomposites as denture base material. Journal of Thermal Analysis and Calorimetry. 2014;115(2):1143-51.
28. Mousavi SM, Hashemi SA, Salahi S, Hosseini M, Amani AM, Babapoor A. Development of clay nanoparticles toward bio and medical applications. Current Topics in the Utilization of Clay in Industrial and Medical Applications. 2018;9:167.
29. Katsikis N, Zahradnik F, Helmschrott A, Münstedt H, Vital A. Thermal stability of poly (methyl methacrylate)/silica nano-and microcomposites as investigated by dynamic-mechanical experiments. Polymer degradation and stability. 2007;92(11):1966-76.
30. Zou D, Yoshida H. Size effect of silica nanoparticles on thermal decomposition of PMMA. Journal of thermal analysis and calorimetry. 2010;99(1):21-6.
31. Saladino M, Motaung T, Luyt A, Spinella A, Nasillo G, Caponetti E. The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA. Polymer degradation and stability. 2012;97(3):452-9.
32. Aghili A. Preparation of PMMA/nano-SiO2 nanocomposite and its application in formation of microcellular foams using supercritical CO2. Advances in Applied NanoBio-Technologies. 2020;1(4):105-14.
33. Djahnit L, Sened N, El-Miloudi K, Lopez-Manchado MA, Haddaoui N. Structural characterization and thermal degradation of poly (methylmethacrylate)/zinc oxide nanocomposites. Journal of Macromolecular Science, Part A. 2019;56(3):189-96.
34. Vallés C, Papageorgiou DG, Lin F, Li Z, Spencer BF, Young RJ, et al. PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites. Carbon. 2020;157:750-60.
35. Parthasarathy V, Nakandhrakumar R, Mahalakshmi S, Sundaresan B. Structural, optical, thermal and non-isothermal decomposition behavior of PMMA nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30(8):2998-3013.
36. Banaei N, Ahmadi S. High-density polyethylene surface modification for the attachment of Eggshell and Oak Bark Nanoparticles. Advances in Applied NanoBio-Technologies. 2020;1(3):67-71.
37. Niknam Z, Goudarzian N, Yousefi K. Reducing Amination of Aldehydes and Ketons with Highly Branch Polyethylenemine Supported Zirconia Borohydride and Nano Tetrachlorosilane as a New and Mild Reducing Agent. Advances in Applied NanoBio-Technologies. 2021;2(1):17-22.
38. Cheng SK, Chen CY. Study on the phase behavior of ethylene–vinyl acetate copolymer and poly (methyl methacrylate) blends by in situ polymerization. Journal of applied polymer science. 2003;90(4):1001-8.
39. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. Journal of research of the National Bureau of Standards Section A, Physics and chemistry. 1966;70(6):487.
40. Lyon RE. An integral method of nonisothermal kinetic analysis. Thermochimica Acta. 1997;297(1-2):117-24.
41. Pérez-Maqueda L, Criado J. The accuracy of Senum and Yang's approximations to the Arrhenius integral. Journal of thermal analysis and calorimetry. 2000;60(3):909-15.
42. Wanjun T, Yuwen L, Hen Z, Zhiyong W, Cunxin W. New temperature integral approximate formula for non-isothermal kinetic analysis. Journal of thermal analysis and calorimetry. 2003;74(1):309-15.
43. Órfão JJ. Review and evaluation of the approximations to the temperature integral. AIChE Journal. 2007;53(11):2905-15.
44. Coats AW, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68-9.
45. Doyle C. Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science. 1962;6(24):639-42.
46. Senum GI, Yang R. Rational approximations of the integral of the Arrhenius function. Journal of thermal analysis. 1977;11(3):445-7.
47. Olver FW, Lozier DW, Boisvert RF, Clark CW. NIST Handbook of mathematical functions. Cambridge University Press; 2010.
48. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta. 2011;520(1-2):1-19.
49. Starink M. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. Journal of materials science. 2007;42(2):483-9.
50. Holland B, Hay J. The value and limitations of non-isothermal kinetics in the study of polymer degradation. Thermochimica acta. 2002;388(1-2):253-73.
51. Etienne S, Becker C, Ruch D, Grignard B, Cartigny G, Detrembleur C, et al. Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA. Journal of thermal analysis and calorimetry. 2007;87(1):101-4.
52. Rychlý J, Pavlinec J. Thermal degradation of free radically prepared poly (methyl methacrylate). A nonisothermal weight loss study. Polymer degradation and stability. 1990;28(1):1-15.
53. Hu Y-H, Chen C-Y. The effect of end groups on the thermal degradation of poly (methyl methacrylate). Polymer degradation and stability. 2003;82(1):81-8.
54. Putz KW, Mitchell CA, Krishnamoorti R, Green PF. Elastic modulus of single‐walled carbon nanotube/poly (methyl methacrylate) nanocomposites. Journal of Polymer Science Part B: Polymer Physics. 2004;42(12):2286-93.
55. Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E. Effects of weak linkages on the thermal and oxidative degradation of poly (methyl methacrylates). Macromolecules. 1986;19(8):2160-8.
56. Holland B, Hay J. The effect of polymerisation conditions on the kinetics and mechanisms of thermal degradation of PMMA. Polymer degradation and stability. 2002;77(3):435-9.
57. Manring LE. Thermal degradation of poly (methyl methacrylate). 2. Vinyl-terminated polymer. Macromolecules. 1989;22(6):2673-7.
58. Manring LE. Thermal degradation of poly (methyl methacrylate). 4. Random side-group scission. Macromolecules. 1991;24(11):3304-9.
59. Manring LE, Sogah DY, Cohen GM. Thermal degradation of poly (methyl methacrylate). 3. Polymer with head-to-head linkages. Macromolecules. 1989;22(12):4652-4.
60. Hirata T, Kashiwagi T, Brown JE. Thermal and oxidative degradation of poly (methyl methacrylate): weight loss. Macromolecules. 1985;18(7):1410-8.
61. Hatakeyama T, Quinn F. Thermal analysis: fundamentals and applications to polymer science. [sl]; 1999.
62. Holland B, Hay JN. The kinetics and mechanisms of the thermal degradation of poly (methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer. 2001;42(11):4825-35.
63. Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica acta. 2003;404(1-2):163-76.
64. Málek J. The kinetic analysis of non-isothermal data. Thermochimica acta. 1992;200:257-69.
65. Brown M, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochimica Acta. 2000;355(1):125-43.
66. Ballistreri A, Montaudo G, Puglisi C. Reliability of the volatilization method for determination of the activation energy in the thermal decomposition of polymers. Journal of thermal analysis. 1984;29(2):237-41.
67. Kashiwagi T, Hirata T, Brown JE. Thermal and oxidative degradation of poly (methyl methacrylate) molecular weight. Macromolecules. 1985;18(2):131-8.
68. Lyon RE, Safronava N. A comparison of direct methods to determine n-th order kinetic parameters of solid thermal decomposition for use in fire models. Journal of thermal analysis and calorimetry. 2013;114(1):213-27.
69. Zeng C, Hossieny N, Zhang C, Wang B. Synthesis and processing of PMMA carbon nanotube nanocomposite foams. Polymer. 2010;51(3):655-64.
70. Grady BP. Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromolecular rapid communications. 2010;31(3):247-57.
71. Du F, Fischer JE, Winey KI. Coagulation method for preparing single‐walled carbon nanotube/poly (methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. Journal of Polymer Science Part B: Polymer Physics. 2003;41(24):3333-8.
72. Velasco-Santos C, Martinez-Hernandez A, Fisher F, Ruoff R, Castano V. Dynamical–mechanical and thermal analysis of carbon nanotube–methyl-ethyl methacrylate nanocomposites. Journal of Physics D: Applied Physics. 2003;36(12):1423.
73. Zeynalov EB, Friedrich JF. Antioxidative activity of carbon nanotube and nanofiber. The Open Materials Science Journal. 2008;2(1).
74. Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochimica Acta. 2011;523(1-2):1-24.
75. Chivas‐Joly C, Motzkus C, Guillaume E, Ducourtieux S, Saragoza L, Lesenechal D, et al. Influence of carbon nanotubes on fire behaviour and aerosol emitted during combustion of thermoplastics. Fire and materials. 2014;38(1):46-62.
76. Wang C, Guo Z-X, Fu S, Wu W, Zhu D. Polymers containing fullerene or carbon nanotube structures. Progress in Polymer Science. 2004;29(11):1079-141.
77. Kim ST, Lim JY, Park BJ, Choi HJ. Dispersion‐Polymerized Carbon Nanotube/Poly (methyl methacrylate) Composite Particles and their Electrorheological Characteristics. Macromolecular Chemistry and Physics. 2007;208(5):514-9.
78. Schartel B, Pötschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal. 2005;41(5):1061-70.
79. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer. 2004;45(12):4227-39.
80. Amani AM, Hashemi SA, Mousavi SM, Abrishamifar SM, Vojood A. Electric field induced alignment of carbon nanotubes: methodology and outcomes. Carbon nanotubes-recent progress. IntechOpen; 2017.
Published
2021-09-20
How to Cite
1.
Aghili A, Kamrani MR. Modeling of the Thermal Degradation of Poly (methyl methacrylate) and its Nanocomposite with Multi-Walled Carbon Nanotubes. AANBT [Internet]. 20Sep.2021 [cited 21Apr.2021];:22-4. Available from: https://dormaj.org/index.php/AANBT/article/view/270
Section
Articles