Surface Modification of Nano-Hydroxyapatite by Coating Stearic Acid

M. Yousefi1*, N. Modghan2, M.H. Ebrahimzadeh2

1 Department of Orthopaedic Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Materials Science and Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Received: 06/01/2020 Accepted: 13/03/2020 Published: 20/03/2020

Abstract

Today's researchers are challenging with manufacturing polymeric nanocomposites reinforced with ceramic particles due to two inherent properties of ceramic reinforcement particles, particle agglomeration and incompatibility between hydrophilic ceramic particles and hydrophobic polymeric matrix. So in this study, we used nano-Hydroxyapatite (n-HA) as ceramic material and Stearic acid as amphiphilic material for coating n-HA, hydroxysteric acid (SA) surfactant was used for surface coating particles between the hydrophilic HA powders and the hydrophobic polymers. The surface modification and effect of this method were evaluated by Fourier transformation infrared (FTIR), x-ray diffractometer (XRD), thermal gravimetric analysis (TGA) and Scanning electron microscopy (SEM). The result of FTIR showed that n-HA surfaces were modified successfully and the modification method had the proper grafting amount according to TGA due to this method of modification will be proper for coating reinforcement particles in polymeric matrix.

Keywords: Hydroxyapatite, Stearic acid, Hydrophilic ceramic, Amphiphilic, Stearic acid

1 Introduction

Aliphatic polyesters, such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA) and their copolymer (PLGA), are biodegradable and essentially non-toxic one of the main polymer groups, such as bone screws, bone plates and pins made of PLA or PDLLA have been widely used in bone fracture fixation [1–3]. However, PLLA and PDLLA have still their weaknesses, for example for PLLA, although it can be completely degraded in one or two years [4]. Moreover, for clinical research, and so far it has been one of the most commonly used in biomedical fields such as bone screws, due to the combination of its bioabsorbability, biodegradable, biocompatible [5]. However, for PLLA, there are still some critical subjects to be solved so as to be used as bone screws in body, for example, its mechanical properties are too low to be sufficient for more demanding load application due to its non-crystallinity, and the poor cell attachment ability [6,7]. To overcome these inherent disadvantages, the prevalent method is to introduce the inorganic fillers into PLLA to fabricate filler/polymer composites, such as hydroxyapatite, _tricalcium phosphate, bioglass, titanium dioxide, and so on [8-11]. Among the inorganic filler/PLLA composites, nano-hydroxyapatite (n-HA) is a major inorganic component of natural bone, so it was thought to have good bioactivity and osteoconductivity properties due to their chemical and structural similarity to the mineral phase of native bone. Moreover, n-HA is a weak alkali inorganic filler, which can buffer acidic in body[12–14]. Therefore, to improve the shortcomings of PLLA, the n-HA/PLLA composite have been extensively investigated, which are expected to reinforce mechanical properties, improve cell adhesion and endow it with bioactivity as well as adjust the degradation rate by inducing n-HA nanoparticles [15–17]. However, there are two most problematic issues in manufacturing n-HA/PLLA composite, the one is the agglomeration of the HA nanoparticles in the PLLA matrix, and another is a weak adhesion between the hydrophilic n-HA and hydrophobic polymer, which will result in early failure at the interface and thus deteriorate the mechanical properties and limit its load-bearing applications. To solve these problems, it is necessary to hunt for an appropriate modification method for n-HA to improve the dispersion and the compatibility between the filler and the polymer, and it has been becoming the key of research work. Accordingly, many methods have already been applied [18-23], including a diverse class of coupling agents, zirconyl salt, poly acids, dodecyl alcohol, polyethylene glycol and isocyanate, and so on. However, among these techniques, the modification effects were all not very ideal, most of these methods are complex, while the surface of nanoparticles is not well covered. Based on this aim of our work is to develop a modified coating to potentially enhance the application of nanohydroxyapatite for biomaterials. Therefore n-HA was coated with stearic acid by means of solution mixing, this method is simple and low cost

2 Materials and Methods

2.1 Materials

n-HA was prepared on our previous report[24], Briefly, separate solutions of calcium nitrate tetra hydrate (Ca (NO3)2·4H2O; Merck) in water and phosphoric acid (H3PO4; Merck) in ethanol/water (1/4 by mole) were prepared by stirring each for 3 h and were then mixed together at a stoichiometry of [Ca]/[P] ¼ 1.67, followed by stirring for 6 h, and aging for 7 days at room temperature. The product was white precipitated
that were dried at 80°C for 24h in oven then were calcined at 600°C for 2h using an electrical furnace with heating rate of 10°C/min to prepare nano HA powder.

2.2 The modification of n-HA
Firstly, an amphiphilic surfactant SA (C18H36O3; Aldrich) was dissolved in aceton at 50°C. (Solution 1). The HA powder was dispersed at 5% w/v in the aceton (solution 2). Then, two solution mixed up together and stirred 4 hours at 55°C, in period of stirring volume of aceton should be constant, then solution was washed with chloroform and cyclohexane, respectively.

In order to study the phase evolution and formation of crystalline HA, the produced powders were analyzed by using IR spectroscopy (Buck 500, KBr) in the range of 500–4000 cm\(^{-1}\). Phase identification of the calcined gels was performed using the X-ray diffractometer (XRD, Philips, X’pert Pro, CuK\(\alpha\)) at a scanning speed of 1° 2θ min\(^{-1}\) from 10° to 60°. electron microscopy (SEM S 360, Oxford-England) was used for morphology analysis of products.

3 Results and Discussion
3.1 XRD analyse
The XRD pattern Hydroxyapatite was shown in Figure 1. The pattern indicate the presence of pure hydroxyapatite in obtained powder.

3.2 Morphology and particle size
For proper amount of nanoparticle coating, it is necessary to measure the particle size of the particles to assess appropriate amount of SA, otherwise the surfactant amount will be less and coating will be incomplete. In The Fig. 2 was shown morphology of n-HA that had spherical shape, and mean size nanoparticles measured 30 nanometres.

3.3 IR analyse
The IR spectra of n-HA and g-n-HA are shown in Fig 3. For n-HA (shown in Fig. 3(a)), the spectroscopic band are observed around the 3568 cm\(^{-1}\) and 632 cm\(^{-1}\), which are described to the stretching vibration of the hydroxyl group (OH) of n-HA, and the peak at 3421 cm\(^{-1}\) and 1637 cm\(^{-1}\) are both attributed to adsorbed water. The peak at 875 cm\(^{-1}\) for HPO\(_4^{2-}\), 1094 cm\(^{-1}\), 1032 cm\(^{-1}\), 604 cm\(^{-1}\) and 564 cm\(^{-1}\) are all attributed to PO\(_4^{3-}\) peak. In addition, 1452 cm\(^{-1}\) and 1413 cm\(^{-1}\) double split peaks belong to CO\(_3\) asymmetric stretch peak, which indicated CO\(_3^{2-}\) entered HA lattice. These results are in accordance with that of n-HA in literature. After surface modification, the above characteristic peaks of n-HA are all observed in the spectra of g-n-HA, which suggested n-HA had not been changed. Compared with the spectra of g-n-HA, for the g1-n-HA (shown in the Fig. 3(b)), a new absorptions emerges at 1558 cm\(^{-1}\), implying the formation of calcium carboxylate on the surface of n-HA.
Advances in Applied NanoBio-Technologies

2020, Volume 1, Issue 1, Pages: 1-4

3.4 TGA
The amounts of grafted HSA were measured by TGA, as shown in Fig. 4. According to the TGA curve, the weight loss of n-HA is 2.08%, and the g-n-HA, 5.729%. Thus, the surface-grafted amounts of g-n-HA is calculated as follows: The grafting amounts = weight loss% (g-n-HA)-Weight loss % (n-HA), which is 3.649. Obviously, it is further proved that n-HA surface was successful grafted in quantitatively.

4 Conclusions
Nanoparticles of hydroxyapatite were coated with a simple and efficient method which result of TGA and FTIR confirmed appropriate coating.

Ethical issue
Authors are aware of, and comply with, best practice in publication ethics specifically with regard to authorship (avoidance of guest authorship), dual submission, manipulation of figures, competing interests and compliance with policies on research ethics. Authors adhere to publication requirements that submitted work is original and has not been published elsewhere in any language.

Competing interests
The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Authors’ contribution
All authors of this study have a complete contribution for data collection, data analyses and manuscript writing.

References


